Ok a quick lil discussion about the :init function and a couple of neat tricks you can do with it. This is my solution to a software package that can start in different modes, i.e. Airborne, or Ground etc. I’m sure there are other methods of doing this… I’ve found this to be a quick and simple answer to that situation. Your software may vary, see your flight crew for details, Offer may not be valid in some states, see your local airport for exclusions or other offers! (
Taking a moment to look at how the epic operates, or rather what it does on start up…When you load the epic it only loads the control code. If an :init function is in the file it runs this function one time… and only on a load. It actually doesn’t do anything until you begin inputting switch inputs. Now it will act on those switches that are “on” initially, DPST switches, because as soon as it begins scanning it detects the “on” state of one side of the switch, so it can be slightly confusing. What you will usually see is something like some switches seem to immediately do what you have coded them to do, others seems to take a couple of attempts and then begin working… usually those that have flag statements attached to their functions I’ve noted. However I’m still trying to sort this one out!

OK so exactly what is the :init function? Well to give it a simple definition: it is a run once, on load, and exit procedure block. If you work with any digital displays you may already be familiar with it to some degree because you need to “initialize” your displays before they will display anything other than the default 0 on power up. A couple of neat features of this function… because it is a run one time procedure it gives us a way to call a series of functions/procedure blocks all at once and run them once only… hence init, or initialize. The other neat aspect of it is that it can be called to execute from a button press or switch input, however it must be explicitly called, it may also be called from within a procedure block as well. You may be beginning to see the possibilities at this point. Because of this nature we can define separate :init procedures for a given switch input! We simply create the blocks as :init1, :init2 etc… I will simply use :init thru this doc for simplicity.

Example, say we have a sim software that may start either on the ground or in the air, utilizing the :init function we can define two different starting configurations for our simulator.… An airborne configuration, say with radar already on, gear up, and countermeasures of chaff and flares already armed… We “preflight” our pit, making the necessary switch settings for an airborne flight configuration… Hit our switch that calls the airborne flight configuration and then start the flight software and voila’ we have our simulator synced to the software when it starts rather than having to go thru a series of switches and resets in our pit to make the change. Similarly we can have a “ground start” config as well… Hopefully at this point you can see that there are other possibilities as well… say a “preset” ground attack mode for those software packages that don’t have one? Generally tho, while it is possible, it is much more desirable to set flight modes thru switch coding rather than the :init procedure!

Things to keep in mind before you go beginning to define a whole new series of “configs” for your simulator! First of all you need to be aware of what is happening when the :init is being called… If it calls procedures that send keypresses to the software, it will send those keypresses during the procedure! You need to ensure the “timing” of when you call it! Using the airborne config above. In this case we are syncing the simulator to the “startup” state of the software! If we start the software and then sync the pit, we may end up sending keypresses we don’t want to, like a gear command! Additionally if we are flipping switches to the airborne config during our “preflight” while the software is running we are sending keypresses as well! Hence the reason for “preflight”, first you are setting the simulator to the conditions you KNOW the AC will be in when the software starts, keypresses at this point should not be having any affect on the state of the software. There is one possibility tho that you may send a keypress that the software also uses in it’s preflight screen, it should be a simple matter of just exiting the software function and moving on with things… Example, your pit preflight sends an M keypress to the software, the software also uses the M keypress to bring up a missions screen… You would simply exit the Missions screen in the software and things should be fine, your switch is now in the correct preflight position so you move on to the software launch now. Simple awareness should be enough here to solve any conflicts!

Let’s briefly touch on the other side of the coin here…. When you might want to use it while the flight software IS running…

Let’s say that every time I start flying I go thru the same series of steps to “setup” my preferred flight settings, say a specific view, jammer on, and chaff and flares armed. The software always starts with these things off…always. During preflight I am going to set the appropriate switches to the “preferred” positions. What this is doing is intentionally starting my pit out in an “out of sync” state with the software… However as soon as I begin and the software is running I hit the switch that calls the :init that configures my preferred parameters. Remember that during the :init it will be sending keypresses if the procedures in it send them!!

So during the :init procedure what I am essentially doing is “re-syncing” the software to my pit here. Remember one of our goals in writing epic code is to make the software follow the simulator, not chase the software with our simulator!!

Some things to keep in mind thru all this! As a rule we generally don’t want to send keypresses to the software WITHOUT actually initiating them thru a switch. One thing quickly becomes obvious about this, if we make a practice of it we will usually find that we are constantly ending up “out of sync”, not a good thing! The other aspect of it is that when you do send keypresses thru the software the software cannot change the switch, physically! So if you find a situation where you need to do this remember that the switch needs to be where the software is going, i.e. the software is “following” the switch! Avoid making a change thru the software and THEN flipping, pressing, whatever… a switch, remember the change in the switch will be sending a keypress! So now you are “chasing” the software with the switch!

Last comments…

Many of you will be reading and wondering why go thru all this when I can simply code the switches and then change things? Agreed! Most of the time it will be easier and simpler to make config changes thru your switches as you have them programmed! And generally this IS the better method.

However there are two cases where you cannot in any manner make the software follow the simulator. On startup… the software WILL begin in a predetermined state, determined by it and the pre-mission parameters you selected in the software. If you simply wait till the software starts then make changes to your pit you are already sending more keypresses while an out of sync condition is present…chasing the software from the get go!

So why can’t I just “set” the switches where they need to be and then start the software? This holds true for some switches and not so for others…depending on the type of switch it is. The simplest explanation is this, some processes need to “see” a switch change state before they will begin to function in the software… Additionally keep in mind that while you have “preflighted” the pit to your preferred parameters it may have not send the keypresses to the software as it was done during the software pre-load phase of simulator start up. Simple observation of the startup state of the software should show if you can preset switches or need to make changes in the coding.

The other condition where you will need to “reset” your simulator is between flights. Once you have finished one flight and are continuing to another you will need a method to “reset” the simulator back to it’s original preflight configuration… While this may seem a simple matter of flipping switches etc. there may be internal variables that need to be reset as well, “stores” if you will, that need replenished, counters that need to be set back to beginning values etc. For these things the :init is the fastest and simplest method of ensuring that everything code wise is where it should be before you begin your next flight!

Lastly there is what I call “a complete systems failure” of the simulator! This occurs when you are so hopelessly out of sync that it might take several minutes of manual “resets” physically in the simulator, and thru the keyboard or mouse in the software to re-sync everything to make any sense of it all… In these cases it is the simplest and fastest method to simply return all switches etc. to the normal “pre-flight” and “reset” the pit thru the :init procedure and, if your code is well written, it should sync the software back to your simulator.

