EPIC Tips, Hints and a few things to keep in mind

The focus of my work is to achieve basically 2 things. 1. To ensure that my simulator is always synced to the software or as I describe it and code it, to make the software follow my simulator. And 2. To realize the full functional capability of the various switches, knobs and pushbuttons that are in the simulator. In other words, if I have an off switch for my radio in the simulator I want it to turn off the radio in the software AND disable any inputs from all the switches that control the radio in my simulator as well. Just as it would function in the actual plane. Generally I’ve discovered that achieving my second goal goes a long way to ensuring that I meet my first goal! This means however that while the output from my simulator may only be doing a simple thing in the software,(A simple keypress for example) it requires additional or more advanced coding to achieve goal #2.This is intended as some things to consider when programming an EPIC set up. I realize that the flexibility of the EPIC leads to the possibility of several “correct” methods of writing the code…. So bear in mind that the concepts here are not necessarily the ONLY method to achieve the desired results!

Key Phrases used in this document:

Referring to “software” means ANY software that is run on your computer, whether it is commercial, or otherwise. If I refer to specific software I will use an abbreviated name like F40 for Falcon 4.0

Code is the processes, procedure blocks, flags etc that make up the EPL language as a whole.

Hardware will generally include the switches, LED’s, and components of the EPIC (physical modules etc)

The simulator or pit refers to the actual cockpit (whatever) you are building, generally as a whole

Switch can mean any type of input signal device… tho it usually refers to physical switch (SPST, DPDT, Rotary, Momentary etc)

THE CONCEPTS:

While it is very easy to write code that simply sends keypresses to the software, it becomes much more challenging to keep those keypresses in sync with the software. That is the primary consideration I give to my code… What you should be thinking is how do it make the software follow YOUR simulator, not chase the software settings with the simulator! I know this sounds redundant, you’re likely thinking NO KIDDING about now, however if you don’t keep this in mind you’ll discover once you fire up the simulator and then the software that soon your pit switches are out of sync with the software… It is easy to write code that tests ok outside the software and then doesn’t do as expected when it runs the software.

REALISM vs the SIMULATOR vs the SOFTWARE:

Another key to your choice of programming methods will be a combination of these three factors. How realistic you want your pit to be…(switch settings, button presses to finally send the software command). If the software is less fully featured than you like you may decide to add more simulator functions to the process to achieve a greater immersion or realism factor from your chosen software… Or if the software is already quite intensive you may opt for a simpler approach to the simulator functions, allowing the complexity of the software to create the “suspension of disbelief”. One of the great things about the EPIC is that it’s adaptability allows you to create different “realism” settings for your pit, or even within the same software program!! Keep in mind here that is not saying you can change the software realism from the pit, but rather create a simple cockpit for amateurs, a novice cockpit, or even the closest thing to the actual cockpit operation that you can!

STUDY THE SOFTWARE, THEN STUDY IT AGAIN!:

Before you can begin defining those really neat functions for all the switches, buttons etc that you have designed into your cockpit it is IMPARATIVE that you understand exactly what does what in the software.

Generally speaking in the software simulator views (in one of them) find some sort of visual indication as well as to the result of a keypress sent to it, be it a light, a visual knob whatever… However the EPIC code may not have such visual indications of what is going on, until it goes wrong! Two things that you are trying to learn from this study of the software, 1 what keys or combinations are actually being sent to the software, you will need to be clear on this when you begin to code the button definitions and procedures. 2 you are trying to learn the logic of the software, bear with me here… For example, you know a (r) keypress turns the radio on or off… and that a (c) keypress will cycle the radio channels… and that the channels won’t cycle unless the (r) is on… all well and good so far, now you’re coding the switches and forget that the two keypresses are linked to each other… so you fire up the software and climb in, begin using the radio… all is well… now you shut off the pit radio and it shuts off the (c) keypress in the software, however you forget the radio is off (pit and software) and change the chan in the pit…(sending a keypress, setting a flag, whatever in the code) nothing happens in the software… you puzzle for a moment and realize that you forgot to turn the radio back on! Ah no problem, flipping the radio on you begin changing chan, but wait… your pit says it is on chan 3 and the software shows it is on chan 5… what happened? You’re out of sync!

In order to solve this coding problem you need to understand the logic behind the radio channel process in the software, WHY? So that you can alter your code to make the software follow the pit. By using this type of reasoning it is easy to code your switches to keep track of their own positions and send the appropriate keypresses to the software to match your pit, rather than attempting to keep your pit in sync with the software! I cannot stress this enough! If you can’t figure out the logic of the software it will prove almost impossible to keep things in sync… onscreen the switches, pushbuttons etc move by themselves, however the software cannot be made to change your pit switches, rotary’s etc… even in the actual plane this would not happen!

UNDERSTAND THE EPIC FUNCTIONS:

Knowing what the EPIC will/does do and what it won’t do… essentially it sends keypresses and analog data to the software, nothing more nothing less!!! Think about it for a moment, what inputs does the software accept? Analog data for joystick/ throttle positions, keypresses, mouse clicks! So what sets the EPIC apart from a standard keyboard controller? In a nutshell it is the ability to do logical processes with an Input of some type, be it a switch, pushbutton, or sensor even, and process that input before outputting it to the software. This also includes analog data as well! The bottom line of all this… we can do some neat tricks with the output keypresses, delay them, repeat them, repeat them for a set number of times, combine them into a series of “commands” to the software…. But in order to make it work as we plan we need to keep in mind that while a standard keyboard buffer accepts and sends the inputs and outputs in the order that they were received, and at a preset speed. The EPIC can do simultaneous logical operations or threads, and send that output faster than the computer sometimes can handle! So while we want our pit to run instantaneously we do have to have some patience at times, but only a few hundred milliseconds of it! This means that we may have to incorporate delays into more complex coding to ensure the proper sequence of thread execution.

FLAGS:

Flags are best used for: if true to this, otherwise do that type of comparisons. In order to do flag functions you first need to declare it, i.e. “create” the flag before you can use it in the EPIC code. Generally I create them as I write the code, this means while I am working on a procedure block I can keep them straight in my head. Keep in mind that a flag is not set to true or false unless it is set in the flag declare statement that “creates” the flag. Generally you will see a switch not functioning and then begin functioning if you have not declared it as TRUE or FLASE in the flag statement!!! This can immediately lead to a sync problem if you are not careful.

I’ve found that since flags do an absolute logical comparison they lend themselves better to a situation where something is turned on, and left on, or off as the case may be. Since they stay set till they are cleared you need to be cautious that you clear them as well once they are no longer needed for the comparison. In other words, if you change the switch back, or off you need to remember to add a clearflag to the procedure as well or a sync problem may occur!

Flags work well with momentary switches, i.e. the press sets or clears the flag if that is the type switch that will be using the code because the switch does not stay active to the EPIC. A good example of how software might utilize this is the ICP panel in F 4.0. When you press any of the functions of the ICP (STPT, T-ILS etc.) it sets a flag that that particular function of the ICP is active and the INCR and DECR buttons now increment or decrement those values on the DED display, (or internal variables in the software code). When you press the Momentary again to clear the DED and set it back to the Comm display, it clears the flag and resets the DED display. (Yes I know it is an oversimplification of the F4 software code but we are trying to compare C++ to EPL here!)

As a rule I tend to avoid flags for a couple of reasons; First while they are straight forward-- they don’t lend themselves well to relative comparisons… And secondly they need to be initialized in some fashion… (see the INIT section for more discussion on this and considerations of setting up your pit initial state) Example… by utilizing an {ifactive (xxx) we create a situation where when the software begins we immediately have the function available instead of the simulator needing to go thru a setflag procedure to make it avail. (Useful for missions that begin in the air rather than on the ground!) If you run test 128 you will notice that all the switches that are displayed as Active are SPST switches! This is because this type of switch works like so… one of two positions is always ON, and if wired properly the EPIC automatically detects the active side of the switch! With a little thought on this you can see how it can be used to an advantage, or it can pose a problem occasionally…

VARIABLES:

The beauty of variables is that they are so useful for counting! Also they can be used to keep track of “positions” on a non-binary rotary etc and then do comparisons! However one thing to keep in mind about them, since they are unseen it is easy to loose track of the actual value of the variable…. And end up with a value outside of the comparison range if you are using GT (greater than) or LT (less than) statements. This is easy to do if you are using a switch input to increment/decrement a variable value. A couple of tricks to ensure that you do not exceed the range of variable values that you want to compare to…

1. Utilize a: ifvar (varA ,equ, range value here)

 call (procedure to reset the value)- like a loop counter!

 else

 (Continue procedure)

this little procedure is useful for keeping in sync with a series of incrementing values in the software that “rolls” over to start the sequence over again rather than beginning to count back down!

2. Keep in mind that if your are displaying the output on a 7 segment led that the digital display automatically rolls over. For instance once you hit 9 and then increment the display again it rolls over to 0. This holds true whether you are displaying single digits, double, triple etc…. the only thing that changes is how many increments are needed to “roll over” the display! The thing you need to keep in mind is that even tho the display has rolled over, or back as the case may be, is that the variable value continues to increment beyond the display! For example: you start with a variable value of 0 display of 0, you increment the variable up to 9, and the display is incremented as well by your code. When you hit the increment again the display will roll back to 0 to begin it’s sequence of 0-9 (or 0-99, or, well you get the idea) however the variable value will be 10, then 11 and so forth. As this process is occurring only in the code we never “see” it in our pit or the software. This can be a real hair puller! We see things working correctly, then after a bit they get out of sync or the EPIC locks in a loop and we are forced to reset the EPIC and we’re left scratching our head as to what happened. The code looks fine, compiles ok and loads ok, and works ok for a bit! The key here is to look for a variable that is “out of range” or can be incremented/decremented outside of the values we are working with, for that procedure!

7 SEGMENT/DIGITAL DISPLAYS:

As a rule when we incorporate these displays into our simulator we are trying to display information about the state of the software. Generally then the sync issues surrounding these types of displays are critical…(see section 2 of the variables section for some insight into this) and most often they will also be the indicators that an out of sync condition is present. Another consideration that I give to these displays is how they will be incremented/decremented in the pit. While it is easy to utilize a simple switch input to increment/decrement them there are times that you will want to move thru a large range of the possible display. For example you have a display that has a range of 0-100, 3 digits, now it will take 100 switch presses to move from 0-99. Way too long in a combat flight sim! In the EPIC manual Ralph has demonstrated how to break the display down into “parts”, i.e. for a 4 digit display make it two displays, 00,00 the first part for thousands/ hundreds, and the second display for 10’s and 1’s. This is a good method of setting a display and limiting a range of presses from 0-9999 down to 0-99, however in some cases we still do not want to have that large of range to work thru. Another method of achieving this is to code the switch to see if we want to move slowly thru the range or quickly!

Keep in mind that we are working with display values or variable values usually here, although it can be applied to keypresses as well it is generally better to use a simple keypress loop for multiple keypresses!

Example: for a display of 0-99 logical display number is 1, arbitrary switch number is 123, keypress is !

:increment {

delay (25)

;pause to allow a switch release

ifactive (123)

;check to see if the switch is still “held”

jump fastincrement
;still being held, jump to the fast procedure

else

;if not held

{addvar(xx,1)

;increase the variable value by 1

 adddisplay(1,1)

;increment the display by 1

}

 }

:fastincrement {ifactive (123)

;allows exit from the loop when you release

{addvar(xx,10)

;now we increment by 10’s instead of 1’s

 adddisplay(1,10)

;increment the display by 10 instead of 1

 delay (20)

;allows you to release the switch, otherwise too fast!

 jump (fastincrement)

;creates the loop again

}

 }

:definebutton(123,on,increment)

;define the procedure block (increment), switch on

An explanation of the above procedure and comments…

Basically the logic of it is this… initiate the keypress… check to see it the switch is being “held”, if held jump to the fast cycle , if not do a single keypress, increase the variable by 1 and the display by 1, and exit

If the key is “held” then the logic changes slightly… switch IS “held”, go to the fast cycle, check the keypress is still held, and begin a loop of the fast cycle, if the switch is released while in the fast cycle… (ifactive(123) is needed to check that you are still holding the switch!) exit the loop! The delays are needed to allow you time to react to the procedure, without the delay in the fast cycle you will never be able to control when the switch is released! In the slow cycle it is needed to ensure that you have time to release the switch so it “sees” the switch as released before continuing the procedure! You can experiment with the delays to find a timing that is comfortable to you

As stated above this little trick is useful for situations where you may need to do a long series of the same

Keypresses to cycle something, generally variable values or displays. It is adaptable to other processes as well… say a series of flap settings, or a speed brake with several “steps” of opening. All you need to add is a keypress into each procedure. As long as the button is held the process cycles quickly… but if you need finer control it allows for individual keypresses also from the same switch! Basically it is a modification of a repeat keypress loop but allows for 2 distinct MODES of operation, a slow single increment/cycle or a faster one!

Some final comments on digital displays. If you are testing a procedure and notice that the display is flickering or stuck on 8 and the EPIC seems locked up it is likely that you are locked in a loop. For some reason your exit procedure is missing or the loop is cycling too fast for the exit procedure to be initiated! Keep in mind that multiple execution threads are possible so you need to ensure that the sequence of execution is finishing in the right order! Hence delays may be needed if this is true! I have discovered the hard way, especially when calling a second procedure, to ensure the order of completion is right. It is easy in those cases where the second procedure alters a value used by the first one to end up with procedures that are not completing in the proper order! Ensure that the called procedure completes before the first procedure continues by adding a simple delay statement in the first procedure!!! In the manual Ralph does discuss this using the trigger outputting example on pages 7-10 of the advanced programming section, however it is easy to forget this simple fact especially when working with procedures that do not output a visual display of the process functioning.

