GammaRay-256[™] V2 USB Module

Product ID.: 510Board Rev.: 2.00Date: July 18, 2005Firmware Rev.: 2.11

Table of Contents

Main Features	4
Introduction	5
Flash Loader Mode : JP10	6
RESET Jumper JP10	6
GammaRay-256 Pin-Out	7
Digital Mode Pin-Out	7
Rotary Mode Pin-Out	9
Mechanical / Optical Rotary Encoders	9
Connecting Various Switches	10
Simplified Wiring	10
SPST Toggle Switches (On-Off)	10
SPDT Switches (On-On)	10
Rocker Switches (On-Off-On)	11
Push Button Switches	11
Multi-Position Rotary Switches	11
Knitter Rotary Switches	12
Hardware Specifications	13
Device Status LEDs	13
Mechanical Specifications	14

GammaRay-256 USB Module

Figure 1 - GammaRay-256

Main Features

Easy installation

The GammaRay[™] V2 is a Full Speed USB HID compliant device which employs default drivers supplied by most OS and powered by the USB Bus.

Digital Inputs

Supports 256 inputs with support for common switches: push buttons, toggles, etc. Each port individually configurable for various modes of operation.

Rotary Encoder

Up to 16 rotary encoders supported including Gray Code, Gray Code 1/2 Pulse & 2-Bit Quadrature.

Short Circuit Protection

Up to 500 mA available on all ports for external circuitry eliminating the need for additional power supplies. Monitoring circuitry prevents component damage.

Software Configurable Operation

Device features can be customized through a simple to use configuration utility.

Flash Loader Mode

Incorporates a Flash Loader for easy firmware updates via USB.

Software Development Kit Provides easy access to communicate with device through custom applications with skeleton samples in VB6, VC++ and MFC.

Keyboard Emulation

Supports software based keyboard emulation using Keyboard Studio™.

Introduction

The GammaRay[™] V2 USB module has been developed for applications requiring hardware input such as switches and digital circuitry. When used with switches, the multiplexed inputs prevent phantom signals or "ghosting" and do not require individual diodes such as scan matrix designs simplifying wiring considerably.

Through a simple to use software configuration utility, device firmware can be easily updated adding new features when they become available. Additionally, various parameters and many aspects of the device can be controlled, adjusted, activated or deactivated to meet individual needs. In each case the GammaRay unit will reconfigure itself in real-time. As such, the configuration settings can be altered at any time during normal operation without the need to disconnect and reconnect the device from the USB bus.

Driver installation is automatic and most OS will install the required drivers without any user intervention. Note: Reset JP10 should be removed prior to plugging the device into a USB port.

Flash Loader Mode : JP10

The GammaRay[™] V2 USB module consists of 2 devices in 1. In *Flash Loader* mode, the module enumerates as a self-programming device used solely for updating the core firmware via USB. In *Standard Device* mode the unit operates as a standard HID device.

RESET Jumper JP10

RESET jumper JP10 can be used to restart the device in *Flash Loader* mode. It should remain open (disable) for normal device operation. The device can be set in *Flash Loader* mode when needed in order to update the core GammaRay firmware. The jumper must be removed after successful firmware update prior to rebooting the device. See the Device Manager utility user manual for details on firmware update procedures.

GammaRay-256 Pin-Out

Digital Mode Pin-Out

JF I – JFZ FIII-Out					
	¥ [™] 2 JP1		C1	2 1 JP2	1 1 2
COMMON GND	12	VPUT 1	COMMON GND	1 2	INPUT 33
INPUT 2	34 IN	VPUT 3	INPUT 34	34	INPUT 35
INPUT 4	56 1	VPUT 5	INPUT 36	56	INPUT 37
INPUT 6	78 1	VPUT 7	INPUT 38	78	INPUT 39
INPUT 8	9 10 1	VPUT 9	INPUT 40	9 10	INPUT 41
INPUT 10	11 12	VPUT 11	INPUT 42	11 12	INPUT 43
INPUT 12	13 14	VPUT 13	INPUT 44	13 14	INPUT 45
INPUT 14		VPUT 15	INPUT 46	15 16	INPUT 47
INPUT 16		NPUT 17	INPUT 48	17 18	INPUT 49
INPUT 18		VPUT 19	INPUT 50	19 20	INPUT 51
INPUT 20		VPUT 21	INPUT 52	21 22	INPUT 53
INPUT 22		VPUT 23	INPUT 54	23 24	INPUT 55
INPUT 24		VPUT 25	INPUT 56	25 26	INPUT 57
INPUT 26		VPUT 27	INPUT 58	27 28	INPUT 59
INPUT 28		VPUT 29	INPUT 60	29 30	INPUT 61
INPUT 30		VPUT 31	INPUT 62	31 32	INPUT 63
INPUT 32	33 34 V	CC 22	INPUT 64	33 34	VCC
	3 4 3		 	ω ω 4	ی ی 4 ی

JP1 – JP2 Pin-Out

JP3 – JP4 Pin-Out

2 JP2 C1	2 1 JP3		JP4
COMMON GND	1 2	INPUT 65	COMMON GND 1 2 INPUT 97
INPUT 66	34	INPUT 67	INPUT 98 3 4 INPUT 99
INPUT 68	56	INPUT 69	INPUT 100 5 6 INPUT 101
INPUT 70	78	INPUT 71	INPUT 102 7 8 INPUT 103
INPUT 72	9 10	INPUT 73	INPUT 104 9 10 INPUT 105
INPUT 74	11 12	INPUT 75	INPUT 106 11 12 INPUT 107
INPUT 76	13 14	INPUT 77	INPUT 108 13 14 INPUT 109
INPUT 78	15 16	INPUT 79	INPUT 110 15 16 INPUT 111
INPUT 80	17 18	INPUT 81	INPUT 112 17 18 INPUT 113
INPUT 82	19 20	INPUT 83	INPUT 114 19 20 INPUT 115
INPUT 84	21 22	INPUT 85	INPUT 116 21 22 INPUT 117
(NPUT 86	23 24	INPUT 87	INPUT 118 23 24 INPUT 119
INPUT 88	25 26	INPUT 89	INPUT 120 25 26 INPUT 121
INPUT 90	27 28	INPUT 91	INPUT 122 27 28 INPUT 123
INPUT 92	29 30	INPUT 93	INPUT 124 29 30 INPUT 125
INPUT 94	31 32	INPUT 95	INPUT 126 31 32 INPUT 127
INPUT 96	33 34	VCC	INPUT 128 33 34 VCC
	မ မ မ -န		
4			6

vatio	2 1 JP5		63	2 1 JP6	2 2 2
COMMON GND	12	INPUT 129	COMMON GND	12	INPUT 161
INPUT 130	34	INPUT 131	INPUT 162	34	INPUT 163
INPUT 132	56	INPUT 133	INPUT 164	56	INPUT 165
INPUT 134	78	INPUT 135	INPUT 166	78	INPUT 167
INPUT 136	9 10	INPUT 137	INPUT 168	9 10	INPUT 169
INPUT 138	11 12	INPUT 139	INPUT 170	11 12	INPUT 171
INPUT 140	13 14	INPUT 141	INPUT 172	13 14	INPUT 173
INPUT 142	15 16	INPUT 143	INPUT 174	15 16	INPUT 175
INPUT 144	17 18	INPUT 145	INPUT 176	17 18	INPUT 177
INPUT 146	19 20	INPUT 147	INPUT 178	19 20	INPUT 179
INPUT 148	21 22	INPUT 149	INPUT 180	21 22	INPUT 181
INPUT 150	23 24	INPUT 151	INPUT 182	23 24	INPUT 183
INPUT 152	25 26	INPUT 153	INPUT 184	25 26	INPUT 185
INPUT 154	27 28	INPUT 155	INPUT 186	27 28	INPUT 187
INPUT 156	29 30	INPUT 157	INPUT 188	29 30	INPUT 189
INPUT 158	31 32	INPUT 159	INPUT 190	31 32	INPUT 191
INPUT 160	33 34	VCC	INPUT 192	33 34	VCC
	ພ ພ ພ +		112 CI	ມ ມ ິມ -4	ی بی 4 ن

JP5 – JP6 Pin-Out

JP7 – JP8 Pin-Out

	2 1 JP7			2 1 JP8	
COMMON GND	1 2	INPUT 193	COMMON GND	12	INPUT 225
INPUT 194	34	INPUT 195	INPUT 226	3 4	INPUT 227
INPUT 196	56	INPUT 197	INPUT 228	56	INPUT 229
INPUT 198	78	INPUT 199	INPUT 230	78	INPUT 231
INPUT 200	9 10	INPUT 201	INPUT 232	9 10	INPUT 233
INPUT 202	11 12	INPUT 203	INPUT 234	11 12	INPUT 235
INPUT 204	13 14	INPUT 205	INPUT 236	13 14	INPUT 237
INPUT 206	15 16	INPUT 207	INPUT 238	15 16	INPUT 239
INPUT 208	17 18	INPUT 209	INPUT 240	17 18	INPUT 241
INPUT 210	19 20	INPUT 211	INPUT 242	19 20	INPUT 243
INPUT 212	21 22	INPUT 213	INPUT 244	21 22	INPUT 245
INPUT 214	23 24	INPUT 215	INPUT 246	23 24	INPUT 247
INPUT 216	25 26	INPUT 217	INPUT 248	25 26	INPUT 249
INPUT 218	27 28	INPUT 219	INPUT 250	27 28	INPUT 251
INPUT 220	29 30	INPUT 221	INPUT 252	29 30	INPUT 253
INPUT 222	31 32	INPUT 223	INPUT 254	31 32	INPUT 255
INPUT 224	33 34	vcc	INPUT 256	33 34	VCC
12 C	ω ω 4 ω		16	ມ 4- ພ	

Rotary Mode Pin-Out

Mechanical / Optical Rotary Encoders

Typically these type of rotary encoders require a decoder circuit in order to convert the output signals into a usable form by software applications. Any one port on the GammaRay can be configured for rotary encoder support whereby all decoding is done in firmware eliminating the need for external decoding circuitry. Supported rotary encoder output signals can be Gray code, Gray code ½ Pulse or 2-bit Quadrature code.

Typical rotaries consist of 3 pins. Pin "A" & "B" are the encoded outputs and one common middle pin "C".

Connecting Various Switches

The GammaRay module does not use a scan matrix type of input layout. As such diodes are not required since it does not suffer from phantom signals when activating several switch inputs at the same time. This in turn simplifies wiring considerably as illustrated in figure 2.

Rocker Switches (On-Off-On)

Multi-Position Rotary Switches

Multi-Position Rotary Switches come in many configurations, but the most important thing to note is that they all share one or several common pins. These common pins must to be connected to any one of the common GND pins found on the GammaRay unit. All other pins can be connected to any one of the inputs as required.

Knitter Rotary Switches

These are special rotary type switches that do not require a decoder circuit in order to be used with the GammaRay button inputs. Typical rotary encoders require a decoder circuit in order to convert the output signals into a form usable by this USB module.

Hardware Specifications

All inputs on the GammaRay are active low, which means you must ground an input in order to register a high "ON" signal at the output.

Most operating systems will detect and load the appropriate HID driver for your device and do not require that a custom device driver be installed.

Maximum power consumption is 2.5W (500 mA) and is powered by the USB bus. You do not need to use an external power supply for this device when connecting several optical encoders or circuitry to the onboard power pins (+5 Vcc) specifically added for this purpose. It is imperative that these devices not consume more than 500 mA. Doing so will trip the short circuit protection which will shut down all power to external devices and circuitry.

DO NOT EXCEED 100 mA when connecting the GammaRay to a bus-powered USB HUB.

The USB HUB will not be able to provide sufficient current. This will lead to one of several outcomes depending on the design:

- o GammaRay will fail to enumerate and will not function.
- The HUB will shut down until current drain falls below 100 mA.
- The HUB will continue to operate but devices connected to this HUB may display erratic behavior or fail entirely.

Use **self-powered** HUBs that have their own power source (wall adapter) or connect the GammaRay directly into the USB ports of your PC. As per USB specifications, PC host USB ports must be able to supply up to 500 mA per port.

NOTE: DO NOT CONNECT any of the GammaRay Vcc pins to external power supplies or voltage sources. Although common grounds can be safely connected to external grounds, it is not recommended and should be avoided whenever possible. Doing so may adversely affect performance, possibly causing strange or erratic behavior under certain conditions.

D1	D2	Description
• Off	Off	Device not powered, not enumerated or short circuit protection has shut down the device.
on 🔴 On	🗧 On	Device configured in Flash Loader mode.
🔵 On	Off	Device configured in standard device mode.
Blinking	🗧 🌒 Blinking	Device in Suspend state.
🔵 On	🗧 🌒 Blinking	Transmitting data to USB host (Flash Loader Mode).
e Blinking	😑 On	Receiving data from USB host (Flash Loader Mode).
on 🔴 On	🗧 🌒 Blinking	Transmitting data to USB host (Standard Mode).
e Blinking	Off	Receiving data from USB host (Standard Mode).

Device Status LEDs

Mechanical Specifications

Visit www.betainnovations.com for the availability of expansion modules and accessories.